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A method is proposed for the solution of the contact problem concerning the 
motion of a stamp on a viscoelastic foundation. Applied to a stamp of cylin- 

drical shape, the method yields an extension of the results obtained for a stan- 
dard linear body to the case of a discrete relaxation time spectrum. 

In attempts to construct a quantitative theory of the friction of solids, the friction 
force is ordinarily separated into deformation and molecular components [ 11. The de- 
formation component is determined by the viscoelastic and plastic properties of the 
bodies making contact. Elastic processes play the main part in steady motion, while the 
deformation component of the friction is determined by hysteresis losses during the re - 

deformation of the material [l ,2 1. The hysteresis phenomena are associated with the 
nonequilibrium of the deformation process for viscoelastic solids, and the degree of non- 
equilibrium of the process depends on the relationship between the characteristic times 
the relaxation processes occurring in the medium and the contact time of a given point 

of the medium surface with unit roughness. Therefore, the solution of the contact prob- 
lem concerning the sliding of a stamp on a viscoelastic foundation affords the possibility 
of determining the nature of the velocity dependence on friction. The case of a cylin - 
drical stamp, for which the investigation is facilitated considerably in connection with 
the two-dimensionality of the problem, is taken below as a specific example. 

The question of the sliding of a cylinder on a viscoelastic foundation has been ex- 
amined earlier in a number of papers in connection with the problem of rolling [3 - 6 1. 

The main difficulty in solving such a problem is associated with the fact that the pres - 
sure cannot be sought by standard methods of inverting the Hilbert transform [ 7 - 91 

when taking account of rheological effects. A method of reducing the viscoelastic con- 
tact problem to an elastic problem for some effective stresses and strains associated with 
the appropriate true values by linear differential relationships was proposed [ 3 1. This 
method has been used [ 6 ] to solve problems on rolling in the presence of adhesion and 

sliding segments. The method of [ 3 ] does not unfortunately allow of extension to the 
case of several relaxation times or to the case of the presence of surface stress singular- 
ities since it results in divergent integrals in the intermediate stages of the calculations. 
A method for the exact solution of the viscoelastic contact problem for a bounded re - 
laxation time spectrum by reduction of the equation for the pressure to one having the 
form of a Hilbert transform is proposed in [ 5 1. However, even in this method the de - 
rivatives of improper integrals, which are divergent expressions, must be dealt with at 
intermediate stages of the calculations. 

A simpler and more correct method of solving the sliding contact problem, which 
is reduced to a Riemann - Hilbert problem for a half-plane with boundary conditions of 

mixed type, is proposed below. 
1. Model of the vfrcoelastic propertfea. Underlying the linear theory 
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of viscoelasticity are 
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operator equations relating the stress o to the strain E 1101 

+m 
e (t) = Ja F 

s 
J (t - t’) u (V) dt’ (1.1) 

--oD 

Because of the causality principle, the Fourier transform of the kernel of the elastic 
aftereffect operator J (0) (complex compliance) is analytic in the upper half-plane 
of the complex frequencies and has a singularity only in the lower half-plane. This pro- 
perty is inherent to any quantities of the type of the generalized susceptibilities[11,121. 

Assuming the singularities to be poles, we can write 

(1.2) 

where E, = J-’ (M) is the dynamic (instantaneous ) elastic modulus of the material, 
the oj determine the location of the complex compliance poles and aj are residue-s 
at the poles. Let us note that a set of poles on the negative imaginary axis oi = 1 / 

(izj) corresponds to the case of a discrete aftereffect time spectrum pi , and a slit 
along the imaginary axis to the case of a continuous spectrum. Vibrational relaxation 

corresponds to poles outside the imaginary axis. 

It is convenient to go over to an associated reference system relative to which the 
stamp is fixed when finding the solution of the contact problem for a moving stamp. 
Under the assumption that inertial effects can be neglected, and that the pattern of the 
stress and strain distribution is stationary in the associated reference system, the equa - 

tions for the stress and strain will have the form of the equations of classical elasticity 
theory with the sole difference that the integral operator of nonlocal interaction J, 
will enter the equation in place of the reciprocal elastic modulus. 

Its kernel has the Fourier transform Jx (q) = J (-qV), where V is the motion 
velocity of the medium (we shall consider the model of a medium for which the visco- 
elastic properties are identical for volume and shear strains, i. e. , the Poisson’s ratio Y 

is not an operator ) , 
If the effective stresses 0ij* are introduced according to the relationship 

ED-‘Oij* E J,aij (1.3) 

in place of the stresses Uij , then the equations of the customary (local) theory of 
elasticity will hold for the effective stresses. In application to the case under consider- 
ation of a contact problem, the fact that the effective pressure turns out to be different 

from zero not only within, but also outside the contact region, is a complication. 

2, Solution of the contact problem. The system under consideration 

is shown in Fig. 1. The surface of the undeformed medium is determined by the con - 
dition y = 0, and the points (kc, 0) correspond to the boundaries of the contact 
domain. The parameter A determines the position of the central axis of the cylinder 
with respect to the center of the contact domain. Displacements of points of the medium 

are given by the two dimensional vector u (5, J_/) = {us (x, y), ~11 (2, ,u)). 

In the absence of friction, finding the pressure reduces to a linear Riemann - Hilbert 
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conjugate problem to determine the 
analytic function 

+m 

w (z) = 
s 

P (t) dt 
t-z 

(z = 3 + iy) 

-02 

in the lower half-plane of the complex 
variable. 

For this function, the real part de- 
termined by the shape of the stamp is 

Fig. 1 given in the contact domain, while 
the imaginary part determined by the 

effective pressure in this domain [ 91 is given urtside the contact domain. According 

to (1.1) and (1.3 ) , and the Fourier inversion formula (1.2 ) , we have outside the con- 
tact domain 

( 9, z>c 

P (4 = uyy (z, 0) = {tygpjexp (q?), s<-c 

pi +(z)exp(- T)dz= p(q) 

(2.1) 

where pj is the Fourier transform of the pressure continued analytically to the point 
OjlV. The possibility of anlytic continuation results from the requirement of integ - 

rability of p (r) in the contact domain. 
Using standard methods of solving the conjugate problem [ 8 ,9 1, and taking account 

of the condition &~vlax = (5 + A)/R in the contact domain, we obtain for the ef - 

fective pressure for 1 z 1 < C 

ED c’J-Zz(z+A) 1 
p*@)= 4(1-v2)R vv + ?cvw 

X 

-c p (t) v-F=F dt + s ‘4 t -2 a-c Jfm 
-00 

From the requirement on boundedness of the strain @,/ax at the points z = 

z!I (c + 0) , the constants A and A can be determined, whereupon the formulas 

for p* and A become 

(2.2) 

2(1-va)R -’ P*(z)dx 
A= nE D _-m v-F=-F s (2.3) 

We evaluate the Fourier transforms of the effective pressure to determine the un - 
known parameters c, Pj entering into (2.2 ) and (2.3 ) . Taking account of (2.1) 
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and (2.2 ) , an appropriate computation yields 

p*(q) = 1 p*(x) e-%x = 2(lnfl& iQ- 
11 (iqc) 

ic Iz i 
,;iyjmj) [zl(iqc)K,(~)+zO(iqc)K1(~)] 

where I, (x), K, (x) are Bessel functions of imaginary argument of the first and third 
kinds [13 1. 

On the other hand, there follows from the definition (1.3 ) and the convolution theorem 
that 

P* (q) = E,J (qV)p (q) (2.4) 

The complex compliance has zeroes at the points zk, where the complex mo- 
dulus E (0) = J-l (v,) has a pole. The locations of the pole-s of the complex modulus 
are determined from relaxation tests and are assumed known. It follows from (2.4 ) that 
the analytic continuation of the Fourier transform p* (q) equals zero at the points 

q = i&/v . We thereby arrive at a system of linear equations p* (+/V) = 0 to 
determine pj. It is convenient to write this system as 

X A,jPj = Bk 
3 (2.5) 

Akj =~~~[z~(~).~(~)+z~(~)~~(~)] 

n;EDc iG c 

Bk= 2(1 z-z1 + -Y”) R &Ok ( ) 
An equation determining the parameter c can be obtained from the requirement 

that the total pressure at the contact equal a given quantity Fti 

+c 

F,= P(x)dx=P(q)lq_.=E,q;Ig9~) 
s 

-% (2.6) 
=E, P* (0) 

--c I Q=o 

where Es = J-l (0) is the static (creep) elastic mudulus . 
The tangential component of the external force goveming the resistence to slip 

can also be expressed in terms of p (q) 

+c 
F,= s p (x) dx = 4 [i y + A.P(B)]~=~ 

--e 

By using (1.2 ) , (2.11, (2.3 1, (2.4), we obtain for the friction coefficient 

The pressure distribution function p (x) can be found by means of the function 
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p (q)= p*(qWn-‘J”(qV) by using the inversion of the Fourier transform, however, 
the corresponding integral is evaluated in elementary or tabulated functions, and if ne- 

cessary , can only be found numerically. 

3, Gate of a standard linear body. In thecaseof astandard linear, 
body, the rheological properties of the substance are characterized by two parameters, 
for which the aftereffect time rP and the relaxation time rn can be taken. 

We should set 

Oj = l/(&p), i;r, = I/(&,) 

in the equations written above for the passage to the standard linear body. 

The other rheological parameters of the material are hence defined in terms of 
the characteristic times by using the relationships 

ED/E, = ~phR, aj = I/(izR) - ll(it,) 

Equation (2.5 ) yields 

(3. I) 

Substituting (3.1) into (2.5)) we obtain an equation to determine the size of the 
contact domain 

which agrees with the corresponding formulas in [ 3,6 ] to the accuracy of the notation. 

4. C o nc lu s i 0 n . The quantities of definite physical interest (size and location of 
the contact domain, friction coefficient ) in the method proposed for seeking the solution 
of the viscoelastic contact problem of slip are determined by means of formulas with 

a simple algebraic structure, whose evaluation does not need numerical integration as 
in the method in [ 6 1, This method can be applied to the case of vibrational relaxation, 
which partially takes account of the inertial properties of a viscoelastic medium, with- 
out any changes. 

A specific numerical computation of the friction coefficient shows that the general 

nature of the dependence of the friction coefficient on the velocity with one maximum 
obtained in [ 3 ] is retained even for the case of the characteristic time spectra. At low 
velocities the resistance force is determined only by the greatest of the aftereffect times, 
however, near the maximum and for high velocities the terms in (1.3 ) corresponding to 
lower aftereffect times turn out to be essential. In this domain the model of a standard 

linear body is not a good approximation for an investigation of the velocity dependence 
of the friction coefficient. 
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